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Can your simulation profit from the GPU?

• What is a GPU?
• How fast it is?
• How to use it?



Multi-core vs many-core
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Massive Parallel Systems (e.g. GPU) as a trade-off
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How fast is it?

Performance Gain

LU 
QR

SpMV Ray 
tracing

FFT Image 
processing

How to use a GPU
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GPU libraires:
cuFFT, cuBLAS…
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Airplanes are getting
more efficient

Engine optimization 
is a main contributor



Topic of Interest

• Nblades= 15
• Chord length fixed

• Casing fixture

TurboLab Stator (1/4)

60 mm d=10mm
h=20mm

d=2mm
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Inlet P0: 102713.0 Pa
Inlet T0: 294.314 K 

Inlet whirl angle: 42°
Inlet pitch angle: 0 °

TurboLab (2/4): Boundary conditions 
and summary

Objectives:
• Lower axial deviation
• Lower total pressure loss

9 kg/s 
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TurboLab (3/4): Parametrization
21 Design variables
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TurboLab (4/4):Optimization Results

1.7 %

IT074IND6

60%

0.17%
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Every point is a costly CFD optimization  need for a HPC solution



How beneficial are GPUs, a quick literature 
check:

• Acceleration is case-dependent (from 1x to 1000x).

• Speedups are sometimes contradicting.

• Some publications are very critical to GPUs for scientific computations:
– Lee et al “Debunking the 100x GPU vs. CPU myth” 

– Vuduc et al. “On the limits of GPU acceleration”
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Main objective:  
A more tangible GPU potential 

CFD GPU solvers Classification 
of CFD operations

Summary
and Conclusions

Proof-of-concept: 
Optimization cases

* All icon in this document from Flaticon.com
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Numerical Scheme:

Implicit Time Stepping 

Explicit Time Stepping 
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• Explicit time integration



Explicit solver

• Application:
Steady RANS simulation

• Solved Equations:
RANS (SA Model) 

• Discretization (2nd Order):
Roe Scheme + Flux Limiter
Explicit RK 4 Stage

• Mesh: Multi-Block, Structured

• Acceleration:  
• 2 level Multigrid
• Implicit Residual Smoothing
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Explicit solver
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Convective Flux Evaluation (1/3)
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Convective Flux (2/3):
Thread mapping possibilities

• Face-wise is not thread-safe

18 /47



• Cell-based mapping  thread safe 
but with redundancy
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Convective Flux (2/3): 
Thread mapping possibilities



• Direction-based mapping  thread safe 
and less redundancy
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Convective Flux (2/3): 
Thread mapping possibilities



• Multicoloring (MC) Face-based mapping
thread safe and No redundancy
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Convective Flux (2/3): 
Thread mapping possibilities
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Convective Flux (3/3): 
Multicolred (MC) vs redundant (Red)



MC RED

Face fluxes per call N/2 2N

Total faces fluxes N 2N

Time per call [ms] 0,28 0,71

Total time [ms] 0,56 0,71

Operations  ratio - 2x

Total Speedup 1,26x -

1,26x instead of 2x:
cost of striped access
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Convective Flux (3/3): 
Multicolred (MC) vs redundant (Red)



Convergence Acceleration on GPU (1/3)

• Explicit solver is well adapted to the GPU architecture
• Flow convergence is slow (CFL limitation)
• Need for convergence acceleration.

• convergence acceleration methods on the GPU?
• Multigrid
• Implicit residual smoothing
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Convergence Acceleration on GPU (2/3): 
Multigrid is also fast on the GPU

• Solve on fine grid
• Interpolate solution and residual to coarse grid

CPU
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1,35

0

0,5

1

1,5

2

0 100 200 300 400 500

T 2
xG

ri
d

s/
T 1

G
ri

d

N Cells in thousands

Cost of a 2-Grid scheme
converging to ideal cost of 1,125

• Solve on coase grid assisted by fine residual
• Prolongate coarse correction to fine grid

1,125
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Convergence Acceleration on GPU (3/3): 
Implicit Residual Smoothing on GPU

• Higher CFL  Oscillation in the solution.

• A smoother residual reduces the oscillation ->Higher CFLs.

• Smoothing: diffusion equation  solve a tridiagonal system.

i: 0 -> Ni

j: 0
 -> N

j



• Higher CFL  Oscillation in the solution.

• A smoother residual reduces the oscillation ->Higher CFLs.

• Smoothing: diffusion equation  solve a tridiagonal system.

Interesting envelop
(CFL increase with IRS x2-x3)

i: 0 -> Ni

j: 0
 -> N

j
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Convergence Acceleration on GPU (3/3): 
Implicit Residual Smoothing on GPU
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A more tangible GPU potential 
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Summary
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Implicit Time Stepping is more Stable but …
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GMRES + Preconditioner

21/35



ILU is costly on GPU

• ILU-GMRES: Small gain
on every iteration 
but ILU setup is slow:

• MCILU-GMRES: Multi-
colored ILU fast only for 
small problems.

0

1

2

3

4

5

6

7

8

9

10

264k 1058k 2249k 4631k

Sp
ee

d
u

p

Nrows

Speedup Krylov Speedup ILU

0

1

2

3

4

5

6

7

8

9

264k 1058k 2249k 4631k
Sp

ee
d

u
p

Nrows

Speedup Krylov Speedup MCILU



Why not Jacobi PC
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• Jacobi-GMRES: very fast
but stable only for small 
time steps

• Jacobi-GMRES: Speedup 
decreases for higher CFLs
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Speedup 
1000x

Speedup 
10x

Actually 
GPU is 
slower

Picture modified from :https://pixabay.com/en/blind-men-elephant-story
-feel-see-1458438/

Classification (1/2):
GPUs controversy

• GPU thousands of lightweight cores.

• Explicit solver: 10x to 100x speedup.

• Implicit solver: 1x to 10x speedup

We need a classification
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Classification (1/2):
GPUs controversy
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Full article:  
Aissa M. ,  Verstraete ,T., and Vuik, c.. "Toward a GPU-aware comparison of explicit and implicit CFD simulations on structured meshes." 
Computers & Mathematics with Applications 74.1 (2017): 201-217. 

Speedup 
1000x

Speedup 
10x

Actually 
GPU is 
slower
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Classification (2/2):
CFD operations

http://ta.twi.tudelft.nl/nw/users/vuik/papers/Ais17VV.pdf


Performance Comparison: Explicit/Implicit
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Performance Comparison: Explicit/Implicit
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Rc=14 (low CFL for implicit =15)

Example of a stator Optimization
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Example of a stator Optimization
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Example of a stator Optimization



LS82 cascade

Rc=457 (Explicit solver bad flow convergence)
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LS82 cascade: Results
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LS82 cascade: Optimized blade
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Summary

Choice Explicit/Implicit: 
Convergence ratio is decisive. 

Explicit RANS:
100x-180x speedup.

Implicit RANS: 10x-20x speedup
(due to slow preconditioning.

On-demand preconditioning:
x3 faster but GPU-friendlier
preconditioner is needed.

The classification: 
an operation-specific 
acceleration offers more insights. 
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Can your simulation profit from the GPU?

• Where you situate your algorithm (slide 4: QR to ray-tracing)?
• Do you need double precision (for half-precision FPGA is faster)?
• ready to code (otherwise openACC is easier to use)?
• Anyone provided a classification for operation used in your field?
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